August 8-12, 2016 · Pittsburgh

National Energy Technology Laboratory

U.S. Department of Energy, Office of Fossil Energy, NETL DE-FE0026490, 10/01/15-09/30/17, Andy Aurelio, P.M., **MicroBio Engineering**, Inc., "Microalgae Commodities from Coal Plant Flue Gas CO2" **Funding: DOE NETL: \$863,327 Orlando Utilities Commission (OUC) Cost Share: \$282,640** John Benemann, P.I., Tryg Lundquist, Co-P.I., Kyle Poole, Project Engineer SFA Pacific. Inc.

PROJECT PARTICIPANTS

- MicroBio Engineering Inc. (MBE), Prime, P.I.: John Benemann, CEO TEAs, LCAs, gap analyses, ponds for OUC & UF, Project management
- Subrecipients:
- Orlando Utilities Commission (OUC): provide data on SEC power plant, emissions, etc.; Operate test ponds at SEC with flue gas CO₂
- Univ. of Florida (UF): operate test ponds, algae anaerobic digestion
- Arizona State Univ.: Train OUC and UF staff in algae cultivation
- Scripps Institution of Oceanography (SIO), Lifecycle Associates
 (LCA), SFA Pacific Inc.: LCA, TEA and engineering assistance to MBE

MicroBio Engineering Inc., San Luis Obispo, California

Facilities Designs – Equipment – Wastewater Reclamation – Scientific Consulting – R&D – Life Cycle Assessments – Techno-Economic Analyses

Tryg Lundquist lan Woertz Ruth Spierling Braden Crowe Matt Hutton Neal Adler Kyle Poole

Overall Project Objectives

- Primary Objective: detailed site specific Techno-economic Analysis (TEA) and Life Cycle Assessment (LCAs) for the **Orlando Utilities Commission Stanton energy Center OUC-SEC Coal-fired power plant for CO**, utilization /mitigation options: Case 1 (Budget Period 1) Biogas production from algal biomass to replace coal for maximum CO₂ mitigation (Budget Period 1), and Case 2 Production of commodity microalgae animal feeds, for maximum beneficial economic use of flue gas CO_2 (BP2)
- <u>Secondary Objective</u>: experimental work at OUC-SEC and UF to demonstrate algae biomass production using flue gas CO2 with native algae and conversion to biogas and animal feeds

Orlando Utilities Commission Stanton Energy Center (OUC-SEC) two ~450 MW Coal-fired PP

Orlando Utilities Commission Stanton Energy Center (OUC-SEC) ~900 MW Coal-fired PP

Future Algae Farm

Marian Contractor

(100 ponds; 1,000 acres)

Case 1. Algae → biogas for power generation (1st Year)

wastewater / Nutrients & water

Flue Gas CO₂ & Electricity

Landfill

Landfill

Gas

Biogas

Orlando Utilities Commission Stanton Energy Center (OUC-SEC) ~900 MW Coal-fired PP

Case 2. Algae \rightarrow animal feed production (next year)

Freshwater Ag Fertilizers

Flue Gas CO₂ & Electricity

Landfill

Landfill

Gas

Future Algae Farm (100 ponds; 1,000 acres)

Animal Feeds

OUC-SEC ~900 MW Coal-fired PP

Technology Fundamentals/Background

Supplying CO, to algal cultures allows for high biomass productivity and complete nutrient assimilation during wastewater treatment or in recycling of algal residues after biofuels conversion / extraction

Tryg Lundquist, Cal Poly

Technology Background: Current Commercial Microalgae Production Technology - Earthrise Nutritionals LLC, Calif. ~50 acres of raceway, paddle wheel mixed ponds for Spirulina production

Paddle wheels

Cyanotech Kona, Hawaii

Technology Background: Municipal Wastewater treatment Delhi, CA, Site of DOE BETO ABY and STTR Projects by MBE / CalPoly

3. Algae Settling 4. Effluent Ponds Pond

1. Facultative Ponds (inflow)

Paddle wheels

2. Two 3.5-acre raceways

At Delhi algae are coagulated, settled, solar dried.

~100,000 gallons of 3% solids algae in decanted settling basin

Algae Field Station - San Luis Obispo, Calif. Research on algal wastewater treatment and Biofuels

310

Green algae typical of fresh water algal mass cultures. Strain control and crop protection still major R&D needs.

Anaerobic Digestion Technology - Low Cost Design for Algae Digestion: 5-acre covered lagoon digester, California dairy

Technical & economic <u>advantages</u> of algal CO₂ capture

- Higher productivity than other biofuel systems
- Can assimilate CO₂ from flue gas directly
- Can treat wastewater and reuse nutrients
- Can use non-agricultural water sources

Prior TEA and LCA studies by the MicroBio Engineering Inc. team

Lundquist, T.J.; I.C. Woertz; N.W.T. Quinn; J.R. Benemann (2010). <u>A Realistic</u> <u>Technological and Economic Assessment of Algae Biofuels</u>, Report to Energy Biosciences Institute, U. Calif. Berkeley, California

Woertz, I.W., J.R. Benemann, N. Du, S. Unnasch, D. Mendola, B G. Mitchell, T.J. Lundquis (2014) "Life Cycle GHG Emissions from Microalgal Biodiesel – a CA-GREET Model" *Env. Sci. Tech.* 48: 6060–68

Technical and Economic <u>challenges</u> to algal CO2 utilization from coal-fired power plants:

- Flue gas CO2 use limited by day/night and seasonal cycles.
- ~ 1/3rd of CO2 piped to ponds lost in transfer or outgassing
- Large land areas needed (~ 10 acre/Mwe) near power plant:
 Land near-flat, on/near grid, relatively low cost...
 - Water fresh, brackish, seawater, wastewaters .
- Limited by climate to lower latitudes (see next slide)
- Undeveloped technology costs are currently are very high

5 billion gallons per year (BGY) of algae biofuel could be produced using municipal wastewater use; 21 BGY with 'stand alone' systems. This DOE NETL Project examines both options at the OUC-SEC site in FL

1st Year Experimental Work at OUC-SEC and U.Florida

- Operate four 3.5-m² ponds at each location
- At OUC Compare flue gas to pure CO₂
 Productivity, Metals concentration (water & biomass)
- At OUC and UF determine seasonal productivities at optimized hydraulic residence times (HRTs)
- At UF: Determine methane yields at one biomass concentration in batch methane potential tests

Experimental Algae Raceway™ Ponds fabricated by MBE and installed at both OUC-SEC and U. Florida At each site two 5-ft² (0.5 m²) ponds to produce inoculum algae for four 35-ft² (3.5 m²) production ponds **OUC-SEC** algae cultivation on flue gas vs. pure CO2 alga. UF cultivation studies (pure CO2), laboratory anaerobic digestion studies

Flue gas from scrubbers to condensate traps to pump to pilot ponds

Flue gas \rightarrow scrubbers \rightarrow condensate traps \rightarrow blower \rightarrow pilot ponds

Filamentous algae dominate at OUC, but not consistently among ponds

Hypothesis: Filamentous increase led to bias in measurement at OUC, not sampling all the biomass.

Microalgae observed at OUC-SEC Ponds

is a strand adda

No filamentous at UF. Some cultures bioflocculate (settle).

Micrographs of Algae from UF Ponds More colloidal than OUC

Example growth curve – "steady state" growth (weekly dilution) productivities similar to initial batch

Example growth curve – "steady state" growth: 3x/week dilutions in green, similar productivities as weekly dilutions

SEC and UF algae are being anaerobically digested at UF to determine CH₄ yield.

Techno-Economic Analysis

CO2 utilization Processes Investigated by this Project

1. Biogas Production Case (1st Yr) Nutrients recycled from anaerobic digesters, option of wastewaters inputs for water, nutrient make-up

2. Animal Feed Case (2nd Yr) Using fresh (and recycled) water & agricultural fertilizers as inputs

Case 1 (this year) : Biogas Process Flow Diagram

Site Selection near OUC-SEC

Site Requirements

- 1,250 acre (500 ha) undeveloped site
 - For 1,000 acres (400 ha) of raceway pond water surface
- Within 10 miles from power plant

Major Local Environmental Parameters:

- Annual Average Precipitation: 135 cm (5.3 in)
- Annual Average Evaporation: 171 cm (6.7 in)
- Net Annual Evaporation ~1 mm/day (0.04in)

Potential Sites near OUC-SEC

1300 ACRES

1300 acres

← Selected Site

CITY OF ORLANDO 705.13 Acres CITY OF ORLANDO OUC

1587.71 Acres

- SEC

3724.72 Acres

1000+ acres

CITY OF ORLANDO 650.85 Acres

> TIITF/DOC 609.08 Acres Orange Co. Ja

INS RIVER WATER MGT I 965.46 Acres

500+ acres

CARLSBAD ORLANDO LLC 2525.37 Acres

OSS PARK PROPERTIES LLLP 839.16 Acres

NDO LLC

Modeling - Power Plant Assumptions

- Coal Type: Illinois Basin Bituminous
- 2014 CO2 Emissions: 5,076,875 tons (Units 1 and 2)
- Flue gas composition (Post Desulfurization, Avg. of Unit1)
 11% CO2
 - 65 ppm SO2
 - 130 ppm NOx
 - 60 ppm CO
 - 1.0 ug/scm Hg

CONCLUSIONS: Contaminants have no significant effect on algal production or economics.

Flue Gas Conditioning and Transfer Operating Parameters

Parameter	Value
Operating Temperature	70 F
Operating Pressure	40 psig
Average Flow (15 g/m ² -d)	17,000 cfm @ 68 F and 1 atm
Peak Flow (4.5 g/m ² -hr)	122,000 cfm @ 68 F and 1 atm

Effect of Operating Pressure on Flue Gas Transport Costs*

*with \$75/t imputed CO2 emissions cost from the power used by compressors

Modeling - Major Assumptions*

- Annual Average Daily Productivity 33 g/m²-day, of which:
 - -15 g/m^2 -day algae growth from CO₂ supplied from flue gas
 - 18 g/m²-day algae from C recycled from anaerobic digesters
- 4.5 g/m²-hr: Peak summer productivity on flue gas CO₂
- 45% Overall loss factor in flue gas CO2 supply to ponds
- 90% efficiency in gravity harvesting (losses recycled to ponds)
- Biogas Production: 0.32 L Methane/g VSS
- Entire digester effluent recycled to ponds. N,P,K losses~10%/y
 *MicroBio Engineering Inc. Experimental data, analysis and projections.

CAPEX:

~100 million for 1000 acres of ponds area

	Start-up and Permitting (4%)	\$3,319,695
	Contingency (10%)	\$8,299,237
	Working Capital (5%)	\$2,544,007
	GC Fee (5%)	\$2,544,007
	A/E Fee (5%)	\$2,544,007
	Subtotal	\$82,992,366
	Filters	\$250,000
	Digesters	\$10,514,985
	Thickeners	\$493,982
	Settlers	\$3,632,126
	Raceways (of which liner \$16 million)	\$27,617,615
	Flue Gas/Nutrients	\$2,651,222
	Utilities (Electrical Distribution (\$7,587,378)	\$14,027,164
	Site (of which Land \$12,334,208)	ŞZ3,803,27 I

Project Financing

Capital Required	\$102,243,320
Percentage of Capital financed by debt	100%
Percentage of Capital financed by equity	0%
Total Borrowed	\$102,243,320
Bond Length (yr)	20
Interest Rate	8%
Bond Repayment	\$10,413,708

	Description	Total
	Operators and Engineers	\$1,700,000
	Manager and Director	\$750,000
	Assistants	\$300,000
	Lab and Office Supplies	\$50,000
	Employee Training	\$42,000
	Insurance	\$720,000
	Depreciation	\$3,632,808
	Make-up Water	\$210,310
	Nutrients (incl. CO2 Distribution)	\$384,609
n	Raceways	\$176,199
	Settlers	\$207,795
)	Thickeners	\$13,254
	Anaerobic Digesters	\$39,071
	Filters	\$18,165
	Equipment Maintenance	\$1,413,163
	Total	\$9,657,374

OPEX ~10 million/yr for 1,000 acres of ponds area (+ ~\$10 million ir bond payments)

Initial TEA Summary

Bond Repayment	\$10,413,708	/yr
Operating Expense	\$9,657,374	/yr
Total Annualized Cost	\$20,071,082	/yr
Income gross biogas @\$2.00/MMBtu*	\$1,043,384	
Cost to Mitigate CO2 at OUC-SEC	\$497	/mt CO2 mitigated

* All biogas sold to OUC-SEC @ \$2/MMBTU for combustion to replace coal. All power used in process purchased from OUC-SEC at \$0.038 /kWhr

Potential Revenue Sources

*Based on treating 12 MGD, ~120,00 people equivalent wastes

Life Cycle Assessment

Energy Balance

Energy Balance

Utilities	Energy		GHG Equiv.	
Make-up Water Pumping	1,112,884	kWh/yr	1,106,485	kgCO2eq/yr
Nutrients				
Flue Gas Transport	5,953,492	kWh/yr	5,919,259	kgCO2eq/yr
Nitrogen Fertilizer (Urea/DAP)	4,167,788	kWh/yr	1,380,081	kgCO2eq/yr
Raceway Mixing	4,636,808	kWh/yr	4,610,146	kgCO2eq/yr
Settlers				
Supernatant Pumping (Recirculation)	4,775,491	kWh/yr	4,748,032	kgCO2eq/yr
Harvesting	262,800	kWh/yr	261,289	kgCO2eq/yr
Subnatant Pumping	430,010	kWh/yr	427,538	kgCO2eq/yr
Thickeners				
Supernatant Pumping (Recirculation)	146,920	kWh/yr	146,075	kgCO2eq/yr
Harvesting	65,700	kWh/yr	65,322	kgCO2eq/yr
Subnatant Pumping	136,170	kWh/yr	135,387	kgCO2eq/yr
Anaerobic Digesters				
Biogas Transport	958,709	kWh/yr	953,197	kgCO2eq/yr
Nutrient Recycle Pumping	69,474	kWh/yr	69,075	kgCO2eq/yr
Filters	478,036	kWh/yr	475,288	kgCO2eq/yr

1

Initial LCA Results Summary

CO2 Emissions Reductions from both Units	0.8	%
Net Annual GHG Emissions Reductions	(38,303)	metric tons CO2
Net Energy Ratio (internal to process)*	0.40	
Net Annual Electrical Generation (38% Eff)	39,075,528	kWh
Gross Annual Biogas Energy Content	521,692	MMBtu
Annual Fuel Production (Biogas)	715,462,048	SCF

* = (Parasitic Energy)/(Biogas Electricity Generated by OUC-SEC coal-fired power plant)

Major Risk Factors – and Risk Reduction Strategies

- Algae Cultures instability, productivity, media recycle, harvest efficiency. Strategy: long term R&D at scale is required; need better strain selection.
- Site Selection Ownership, uses, zoning, rights of way, regulations, soils and geotechnical, flood plain, distance. Strategy: keep looking , 100 ha, sites
- Anaerobic Digestion Design and operations of long-residence in-ground digesters; CH4 yield 0.32 L/g volatile solids. Strategy: R&D lab and at scale.
- CAPEX All aspects of design have uncertainties, risks. Liner a major one.
 OPEX Labor, power costs, water supply, bond payments/ROI, indirect costs.
 Strategy: advance to pilot-scale for more realistic CAPEX-OPEX projections.
- REVENUES Natural gas price. RINs. CO2 and wastewater treatment credits.
 Strategy: waste inputs from ~ 100,000 to >1 million population equivalent (pe) to provide nutrients and make-up water (evaporation, blow-down).
 Use biogas for vehicular fuels (RINs). Combine different credits, products.

Conclusions and Future Developments/Testing

- **Conclusions:** CO2 emissions reduction from coal-fired power plants with microalgal processes will require: -- Wastewater treatment, other revenues, CO2 credits -- Process improvements for lower CAPEX and OPEX
 - Plans for Next Year: TEA/LCA animal feed production
 - Future Plans: scale-up algae biomass cultures at OUC-SEC
 - **Commercialization:** None planned in near term.
 - Need long-term process development and demonstration

